

\#. $\begin{gathered}\text { U.S. DEPARTMENT OF COMMERCE } \\ \text { Ondional } \\ \text { Oceanic and Atmospheric Administration } \\ \text { Environmental Research Laboratories }\end{gathered}$

NOAA Technical Memorandum ERL BOMAP-5

PRELIMINARY VELOCITY DIVERGENCE COMPUTATIONS FOR BOMEX VOLUME BASED ON AIRCRAFT WINDS

Robert W. Reeves

156247

UDC 551.511.32:551.558.2:551.507.352(263)
BOMEX "1969.05-07"

551.5	Meteorology
.507 .352	Aircraft measurements
.511 .32	Divergence
.588 .2	Vertical velocities
(263)	Tropical Atlantic
BOMEX	BOMEX
"1969.05-07"	May - July 1969

Page
NOTATION iv
ABSTRACT 1

1. INTRODUCTION 1
2. DESCRIPTION OF DATA 3
3. METHOD OF CORRECTING WINDS FOR INSTRUMENT ERRORS 5
4. COMPUTED DIVERGENCE AT 1,000 FT 13
5. CONCLUSION 13
6. ACKNOWLEDGMENTS 15
7. REFERENCES 15
APPENDIX 16
```
    p* = vertical coordinate; p* = po - p, where p is pressure at a point, and \(p_{o}\) is surface pressure vertically beneath that point (see Rasmusson, 1971)
\(\omega=\) vertical velocity \(=\mathrm{dp} * / \mathrm{dt}\)
\(g=\) acceleration of gravity
\(A=\) area of the BOMEX square
\(\epsilon=\) perimeter of the BOMEX square
\(\nabla_{h}=\) quasi-horizontal component of vector operator \(\nabla\), the component in a \(\mathrm{P}^{*}\) surface
\(\vec{V}=\) wind vector
\(\mathrm{V}_{\mathfrak{n}}=\) component of the horizontal wind normal to the perimeter, positive outward from the BOMEX square
\(\overrightarrow{\mathrm{TAS}}=\) aircraft movement with respect to the air
\(\overrightarrow{G S}=\) aircraft movement with respect to the ground
\(\delta=\) aircraft drift angle, the angle between \(T A S\) and GS, positive when GS is to the right of TAS
\(\vec{V}_{\mathrm{m}}=\) measured wind vector obtained by subtraction of \(\operatorname{TAS}_{m}\) from \(\mathrm{GS}_{\mathrm{m}}\)
\(V_{M}=\) component of \(\vec{V}_{m}\) normal to aircraft track
\(V S=V_{M}\) measured at a sounding (see text)
\(\overrightarrow{\mathrm{V}}_{\mathrm{a}}=\) computed wind
\(V_{N}=\) component on \(\vec{V}_{a}\) normal to \(€\)
\(\mathrm{V}_{\mathrm{NBE}}=\) average \(\mathrm{V}_{\mathrm{N}}\) for perimeter segment "BE"
hdg \(=\) aircraft heading
HDG = aircraft heading with respect to rotated axes
\(m=\) subscript indicating measured by aircraft instruments
```

V, TAS,
GS, V_{m},
TAS ,
$G S_{m}=$ magnitude of the respective vectors
$\mathrm{T}_{\mathrm{E}}=$ magnitude of error in measured true airspeed, $\mathrm{TAS}_{\mathrm{m}}-\mathrm{TAS}$
$\delta_{\mathrm{E}}=$ magnitude of error in measured drift angle, $\delta_{m}-\delta$,
$\begin{aligned} & V_{\dot{x}}, V_{V_{y x}}, \\ & V_{m y},\end{aligned}=$ west and south components of \vec{V}_{a} and \vec{V}_{m}, respectively.

PRELIMINARY VELOCITY DIVERGENCE COMPUTATIONS FOR BOMEX VOLUME BASED ON AIRCRAFT WINDS

Robert W. Reeves
Barbados Oceanographic and Meteorological Analysis Project National Oceanic and Atmospheric Administration Rockville, Maryland 20852

Abstract

These preliminary calculations of the horizontal velocity divergence within the Barbados Oceanographic and Meteorological Experiment (BOMEX) volume are based on a limited sample of wind measurements from line integral aircraft night flights around the perimeter of the BOMEX volume at a level of $1,000 \mathrm{ft}$ and stepped soundings at seven different heights at the midpoint of each side of the volume. Results indicate that with careful systematic calibration wind data may be useful in determining divergences.

1. INTRODUCTION

One of the prime objectives of the BOMEX Sea-Air Interaction Program is the evaluation of the budgets of mass, water, momentum, and energy for the BOMEX volume based on volume integral techniques. These techniques require measurements on the vertical surfaces of the volume, with supplementary measurements within it. Therefore, observations of wind, temperature, and humidity were made as completely as operationally feasible along the vertical sides of the $500-$ by $500-\mathrm{km}$ BOMEX volume.

Essential and difficult parts of the budget of mass are assessment of the horizontal mass divergence and the vertical velocity. The vertical velocity, intimately related to moisture and energy fluxes in the atmosphere, cannot be measured directly.

In the BOMEX design, as in many other experiments, the principal method of calculating the mean vertical velocity at a particular pressure level is to integrate the equation of continuity of mass,

$$
\begin{equation*}
\frac{\partial p}{\partial t}+\nabla \cdot(\rho \vec{V})=0 \tag{1}
\end{equation*}
$$

from the surface to that level. One form of this integration is

$$
\begin{equation*}
\overline{\omega^{*}}=\int_{0}^{p^{*}} \nabla_{\mathrm{h}} \cdot \overrightarrow{\mathrm{~V}} \mathrm{dp} * \tag{2}
\end{equation*}
$$

where p^{*} is the vertical coordinate in the pressure difference system described by Rasmusson (1971) and ω^{*} the vertical velocity in this system. See the Notation on page iv for further details.

The horizontal divergence, ∇_{h}. \vec{V}, is evaluated from the horizontal wind. By the divergence theorem,

$$
\begin{equation*}
\overline{\nabla_{h} \cdot \vec{V}}=\frac{I}{A} \oint V_{n} d \epsilon, \tag{3}
\end{equation*}
$$

where A is the area of the BOMEX square, $€$ is the perimeter, and V_{n} is the component of the horizontal wind normal to the perimeter, directed outward. The bar over the horizontal divergence term indicates an average over the area A. The line integral is around $€$ at a particular p^{*} level.

One objective in planning BOMEX was to measure wind on the vertical sides of an atmospheric volume with sufficient accuracy to yield meaningful derived values of horizontal velocity divergence (eq. 3) and thereby vertical velocity (eq. 2). This requirement was satisfied by
(a) selecting a region of relatively steady wind to make the wind observations as spatially and temporally representative as possible;
(b) limiting the size of the volume so that it was large enough to provide meaningful differences from side to side but small enough to be adequately sampled by the available observation system.
(c) obtaining wind observations as accurately as operationally and economically feasible, and as closely spaced vertically, horizontally, and in time as feasible;
(d) extracting the data to rigid specifications to retain the maximum accuracy possible; and
(e) judiciously averaging wind observations over space and time to reduce random variability.

Reported here are the results of a preliminary test of the BOMEX-designed calculation of divergence from perimeter wind observations. A sample of the first available aircraft wind data was analyzed to determine the apparent horizontal velocity divergence within the BOMEX volume on each of four successive nights. The data consist of wind observations at the $1000-\mathrm{ft}$ level, which were hand-tabulated aboard WC-121 weather reconnaissance aircraft operated by the Navy VW-4 Squadron. A11 reasonable techniques were applied to correct and judiciously average this limited set of wind observations. Wind observations were automatically recorded on WC-121 and Environmental Science Services Administration Research Flight Facility (RFF) aircraft, and on the fixed ships, but require time-consuming data reduction procedures before they are available for analysis.

2. DESCRIPTION OF DATA

Data for the preliminary line-integral calculations were obtained on four consecutive line integral night (LIN) flights by Navy WC-121 aircraft on the nights of May 31 to June 3. The LIN MOD 2 flight pattern shown in figure 1 was used. Observations were made along $100-\mathrm{n}-\mathrm{mi}$ segments on each side of the BOMEX square, beginning on the southern side. Stepwise soundings were taken at midpoints HOTEL, KILO, JULIETT, and INDIA, and again at HOTEL. These consisted of observations at $1,000,2,000,3,000,4,000,6,000,8,000$, and $10,000 \mathrm{ft}$, with aircraft flying opposite headings at each level parallel to the sides of the BOMEX square. Each flight required about 7 hours and provided the following data:
(a) at 5 -min intervals during the flight the meteorologist recorded temperature, dew point, pressure, altitude, clouds, and sea-surface temperature;
(b) at $5-\mathrm{min}$ intervals on the $100-\mathrm{n}-\mathrm{mi}$ legs the navigator used the ASN-4l on-board computer to tabulate a series of 10 consecutive readings of heading, ground speed, drift angle, calibrated airspeed, pressure-altitude, temperature, and wind speed, using as input continuously displayed heading, drift angle, ground speed, and true airspeed -- 4 to 7 series of 10 consecutive readings being tabulated along each leg; and
(c) during each of the two headings flown at each sounding level the navigator used the computer to tabulate a series of 5 consecutive readings in the same manner as the $100-\mathrm{n}-\mathrm{mi}$ readings.

Figure 1.

In the computations that follow, each series of 5 and 10 consecutive wind direction and speed readings were averaged separately to arrive at a wind direction to the nearest degree and a wind speed to the nearest half knot. This would differ from actual vector averaging only if the speed and direction had varied widely within each series. For example, consider a series of 5 consecutive readings:

Direction	Speed 087° 088°
090°	12 kt
093°	10 kt
094°	8 kt
	8 kt

The vector average of this series is a $9.6-\mathrm{kt}$ wind from 090.1°. Averaging the directions and speeds separately yields a $9.6-\mathrm{kt}$ wind from 090.4°. Wind variability as great as the one exhibited by this example rarely occurred in the data studied.

3. METHOD OF CORRECTING WINDS FOR INSTRUMENT ERRORS

A change in aircraft heading produces an apparent change in the wind vector. This inconsistency is the result of systematic errors in the instruments from which the wind is computed.

Consider the following figure:

Here the vector $\overrightarrow{T A S}_{m}$ represents the aircraft's measured movement with respect to the air, the vector $\overrightarrow{\mathrm{GS}}_{\mathrm{m}}$ represents the measured movement with respect to the ground, and δ_{m}, the measured drift angle, is the angle between the heading and the apparent track of the aircraft. Thus, the vector \vec{V}_{m} is a measured wind vector obtained by vector subtraction of $\overrightarrow{T A S}_{m}$ from $\overrightarrow{\mathrm{GS}}_{\mathrm{m}}$. The usual procedure to refine the wind measurement is to assume errors in both the measured drift angle and the measured true airspeed, indicated in the above figure by T_{E} and δ_{E}. As used here, T_{E} and δ_{E} are corrections applied to the measured quantities to compute the wind, $\overrightarrow{\mathrm{V}}_{\mathrm{a}}$.

By taking readings of $\overrightarrow{\mathrm{TAS}}_{\mathrm{m}}, \overrightarrow{\mathrm{GS}}_{\mathrm{m}}$, and δ_{m} on two headings, one can solve for T_{E} and δ_{E} with certain assumptions. These values of T_{E} and δ_{E} are then used to correct the winds on the various aircraft flight legs. This procedure is used by the RFF and National Hurricane Research Laboratory to correct true airspeed and drift angle measurements (see Friedman et al., 1969).

The following assumptions are applied in the calibration box procedure to measure T_{E} and δ_{E} :
(a) the horizontal wind field remains constant for the period of the calibration run;
(b) $\mathrm{T}_{\mathrm{E}}, \delta_{\mathrm{E}}$, and $\overrightarrow{\mathrm{V}}_{\mathrm{a}}$ are the same on both headings, but are unknown; and
(c) the direction of $\overrightarrow{T A S}$ (the aircraft heading) and the magnitude of GS are accurately measured on the two headings.

Once values of T_{E} and δ_{E} are solved from the calibration boxes, the following equations for the west and south components of the computed wind, V_{x} and V_{y}, can be solved at desired points on the flight legs (fig. 2):

$$
\begin{align*}
V_{x} & =G S_{m} \sin \left(h d g_{m}+\delta_{m}\right)-T A S_{m} \sin h d g_{m} \tag{4}\\
& +T_{E} \sin h d g_{m}-\delta_{E} G S_{m} \cos \left(h d g_{m}+\delta_{m}\right)
\end{align*}
$$

and

$$
\begin{align*}
V_{y} & =G S_{m} \cos \left(h d g_{m}+\delta_{m}\right)-T A S_{m} \cos h d g_{m} \tag{5}\\
& +T_{E} \cos \left(h d g_{m}\right)-\delta_{E} G S_{m} \sin \left(h d g_{m}+\delta_{m}\right)
\end{align*}
$$

The drift angle error, δ_{E}, is in radians.
Components of the measured wind, \vec{V}_{m}, are

$$
\begin{equation*}
V_{m x}=G S_{m} \sin \left(h d g_{m}+\delta_{m}\right)-\text { TAS }_{m} \sin h d g_{m} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{m y}=G S_{m} \cos \left(h d g_{m}+\delta_{m}\right)-T A S_{m} \cos h d g_{m} \tag{7}
\end{equation*}
$$

This method may be described as an "internal calibration" of the windmeasuring system since it makes use of inputs from the compass, airspeed meter, and Doppler radar and does not make use of navigation fixes. In the divergence computations performed here, the pair of readings made on opposite headings at each level during the aircraft soundings was used as an internal calibration of the winds.

$$
\begin{aligned}
& V_{x}=(1)-(2)=(3)-(4)-(5)+(6) \\
& V_{y}=(7)-(8)=(9)-(10)-(11)+(12)
\end{aligned}
$$

Figure 2.

The BOMEX array was oriented along the axes defined by $350^{\circ}-170^{\circ}$ and $260^{\circ}-80^{\circ}$. By rotating the reference axes 10°, we can write the components of the wind normal to the array and outward as follows:

A.		

Along $B E$, for example,

$$
\begin{align*}
V_{N B E} & =G S_{m} \sin \left(H D G_{m}+\delta_{m}\right)-\operatorname{TAS}_{m} \sin \left(H D G_{m}\right) \tag{8}\\
& +T_{E} \sin \left(H D G_{m}\right)+\delta_{E} G S \sin \left(H D G_{m}+\delta_{m}\right)
\end{align*}
$$

and along $A D$ the signs would be reversed. $H D G_{m}$ indicates the measured heading with respect to the rotated axes:

$$
\mathrm{HDG}_{\mathrm{m}}=\mathrm{hdg} \mathrm{~m}_{\mathrm{m}}+10^{\circ}
$$

We have defined $V_{N B E}$ as the computed normal wind component along $B E$. Consider readings on opposite headings, identified by subscripts 1 and 2. Calling the measured normal wind component on heading $1 \mathrm{~V}_{\mathrm{Ml}}$, by anology to (6), we obtain

$$
\begin{equation*}
V_{M 1}=G S_{m} \sin \left(H D G_{1}+\delta_{m}\right)-\mathrm{TAS}_{\mathrm{m}} \sin \left(H D G_{1}\right) \tag{9}
\end{equation*}
$$

Substituting in (8), we have

$$
\begin{equation*}
\mathrm{V}_{\mathrm{NBE} 1}=\mathrm{V}_{\mathrm{M} 1}+\mathrm{T}_{\mathrm{E}} \sin H D \mathrm{G}_{I}-\delta_{\mathrm{E}} \mathrm{GS}_{1} \cos \left(\mathrm{HDG}_{1}+\delta_{1}\right) \tag{10}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\mathrm{V}_{\mathrm{NBE} 2}=\mathrm{V}_{\mathrm{M} 2}+\mathrm{T}_{\mathrm{E}} \sin \mathrm{HDG}_{2}-\delta_{\mathrm{E}} \mathrm{GS}_{2} \cos \left(\mathrm{HDG}_{2}+\delta_{2}\right) \tag{11}
\end{equation*}
$$

Averaging these two equations gives

$$
\begin{align*}
\frac{1}{2}\left(\mathrm{~V}_{\mathrm{NBE} 1}\right. & \left.+\mathrm{V}_{\mathrm{NBE} 2}\right)=\frac{1}{2}\left(\mathrm{~V}_{\mathrm{M} 1}+\mathrm{V}_{\mathrm{M} 2}\right)+\mathrm{T}_{\mathrm{E}} \frac{\left(\sin H D G_{1}+\sin H D G_{2}\right)}{2} \tag{12}\\
& -\delta_{\mathrm{E}}\left[\frac{\mathrm{GS}_{1} \cos \left(\mathrm{HDG}_{1}+\delta_{1}\right)+\mathrm{GS}_{2} \cos \left(\mathrm{HDG}_{2}+\delta_{2}\right)}{2}\right]
\end{align*}
$$

Suppose we now approximate $V_{\text {NBE }}$ by the average of the measured normal wind components on opposite headings. The last terms of (12) become the error error, E , in applying this assumption:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{NBE}}-\frac{1}{2}\left(\mathrm{~V}_{\mathrm{NBE} 1}+\mathrm{V}_{\mathrm{NBE} 2}\right)=\frac{1}{2}\left(\mathrm{~V}_{\mathrm{M} 1}+\mathrm{V}_{\mathrm{M} 2}\right)+\mathrm{E} \tag{13}
\end{equation*}
$$

and

$$
\begin{gather*}
\mathrm{E}=\mathrm{T}_{\mathrm{E}} \frac{\left[\sin H D G_{1}+\sin H D G_{2}\right]}{2} \\
-\delta_{\mathrm{E}}\left[\frac{\mathrm{GS}_{1} \cos \left(H D G_{1}+\delta_{1}\right)+\mathrm{GS}_{2} \cos \left(\mathrm{HDG}_{2}+\delta_{2}\right)}{2}\right] . \tag{14}
\end{gather*}
$$

In our case, $\left(\sin H D G_{1}+\sin H D G_{2}\right)=0$ because the headings are opposite. Hence,

$$
\begin{equation*}
E=-\delta_{E}\left[\frac{G S_{1} \cos \left(\mathrm{HDG}_{1}+\delta_{1}\right)+\mathrm{GS}_{2} \cos \left(\mathrm{HDG}_{2}+\delta_{2}\right)}{2}\right] \tag{15}
\end{equation*}
$$

We can estimate the magnitude of E from typical values:

$$
\begin{aligned}
\delta_{\mathrm{E}} \sim 2^{\circ} & =.035 \\
\mathrm{GS}_{1} \text { and } \mathrm{GS}_{2} & \sim 100 \mathrm{~m} \mathrm{sec}^{-1}
\end{aligned}
$$

Since a crosswind of $10 \mathrm{~m} \mathrm{sec}^{-1}$ would produce a drift of approximately 6°, we use that along with hdg $=0^{\circ}$ and hdg $=180^{\circ}$, as follows:

$$
\delta_{1}=-4^{\circ} ; \quad \delta_{2}=+8^{\circ} .
$$

Then the magnitude of the error term is

$$
\begin{gathered}
.035\left[100 \cos \left(-4^{\circ}\right)+100 \cos \left(188^{\circ}\right)\right](.5) \\
=.035[100(.99756-.99027)](.5) \\
=3.5[00729](.5)=.0125 \mathrm{~m} \mathrm{sec}^{-1}=(.5) .0125 .
\end{gathered}
$$

Even a difference of $2 \mathrm{~m} \mathrm{sec}^{-1}$ in the ground speeds on opposite headings would produce an error of $<0.1 \mathrm{~m} \mathrm{sec}^{-1}$. The error term E can therefore be neglëcted and $V_{\text {NBE }}$ can be assumed to be satisfactorily approximated by the average of $\mathrm{V}_{\mathrm{M} 1}$ and $\mathrm{V}_{\mathrm{M} 2}$.

Finally we rearrange (13):

$$
\begin{equation*}
v_{\mathrm{NBE}} \approx \mathrm{v}_{\mathrm{M} 1}-\frac{1}{2}\left(\mathrm{v}_{\mathrm{M} 1}-\mathrm{v}_{\mathrm{M} 2}\right) \tag{16}
\end{equation*}
$$

and interpret $\frac{1}{2}\left(V_{M 1}-V_{M 2}\right)$ as a correction to apply to $V_{m 1}$ to obtain our best estimate of the crosswind, $V_{\text {NBE }}$. The above method allows us to use winds measured on opposite headings to determine the crosstrack component. It was used during BOMEX field operations in the absence of computing facilities to obtain estimates of the divergence quickly.

The 5 -min average normal wind components along the four sides of the BOMEX volume for the four nights at $1,000 \mathrm{ft}$ are shown in table 1 . The sounding data used as an internal calibration on the winds are presented in table 2. If we form the differences of the normal components on opposite headings in the latter table, we note the variability of those differences within a given sounding, and at any level for successive soundings. Recall that only 10 readings of the wind (5 each on opposite headings) were made at each level. We are aware that the airspeed error is height-dependent, but since the drift angle error should not be dependent on height, we use all levels of the sounding for calibrating the $1,000-\mathrm{ft}$ winds in order to reduce the random error. The divergence is thus based on winds adjusted as follows:

Write (16) in notation applicable to any side of the BOMEX square:

$$
\begin{equation*}
V_{N}=V_{M}(H D G)-\frac{1}{2}\left[V_{M}(H D G)-V_{M}\left(H D G \pm 180^{\circ}\right)\right] \tag{17}
\end{equation*}
$$

We now improve our correction term in brackets in (17) by replacing it with the equivalent correction term averaged over available levels at the sounding at midpoint of the same side of the BOMEX square:

$$
\begin{equation*}
V_{N}=V_{M}(h d g)-\frac{1}{2 j} \sum_{k=1}^{k=j}\left[\mathrm{VS}_{k}(h d g)-\mathrm{VS}_{k}\left(h d \dot{g} \pm 180^{\circ}\right)\right] \tag{18}
\end{equation*}
$$

where the k 's are individual levels and j is the total number of levels in the aircraft sounding.

Table 1. Measured components of the wind in knots, normal to the sides of the BOMEX volume (5-min averages) along $200-n-m i$ segments at $7,000 \mathrm{ft}$

Leg	May 31	June 1	June 2	June 3
South:	-0.5	+1.7	+1.7	-2.6
K1	-0.8	+3.4	+2.5	-1.1
to	-0.3	+1.3	+1.5	-0.4
K	-0.6	+2.0	+1.2	+0.7
	-1.5	+3.4	-0.3	+0.3
	-1.1	+1.6	+1.1	-1.7
	.0	+2.2	+3.9	
North:	+3.4	+2.9	+4.7	+7.7
I1	+3.4	+2.7	+5.2	+9.5
to	+2.6	+2.7	+4.4	+9.8
I	+3.0	+2.9	+4.8	+9.4
	+3.1	+5.2	+5.7	+8.0
			+5.9	
East:	-13.8	-14.0	-10.6	-19.0
Jl	-16.0	-14.0	-9.8	-18.2
to	-11.5	-12.0	-10.4	-19.0
J	-13.0	-12.9	-12.0	-18.0
	-14.0	-16.8	-9.5	-17.4
	-14.7		-10.0	-18.9
West:	+13.8	+19.0	+14.8	+17.5
Hl	+14.8	+20.8	+15.0	+16.2
to	+14.6	+18.7	+15.4	+17.8
H	+14.6	+17.6	+15.9	+19.9
	+15.5		+17.4	+20.4
	+12.7.		+17.3	+19.3
				+17.4

Table 2. Measured components of the wind normal to the BOMEX array during soundings ($2-\mathrm{min}$ averages in knots)

May 31	June 1	June 2	June 3
$0^{\circ} 180^{\circ}$	$\begin{array}{cc} & \text { Aircraf } \\ 0^{\circ} \quad 180^{\circ} \end{array}$	$0^{\circ} 180^{\circ}$	$0^{\circ} 180^{\circ}$

HOTEL

$10,000 \mathrm{ft}$					5.7	9.7		
$8,000 \mathrm{ft}$	8.8	8.0						
$6,000 \mathrm{ft}$	15.6	16.1	6.0	12.5	6.1	13.2	10.8	17.4
$4,000 \mathrm{ft}$	20.4	16.5	10.5	12.7	8.9	17.2	15.9	18.7
$3,000 \mathrm{ft}$	19.3	19.8	10.6	16.9	11.0	19.0	18.6	21.6
$2,000 \mathrm{ft}$		18.8	13.0	10.9	9.0	14.9	19.0	21.0
$1,000 \mathrm{ft}$	18.3	10.7	12.0	15.9	9.5	16.9	16.9	19.9

JULIETT

$10,000 \mathrm{ft}$	4.9	8.3	0.5	4.1	4.7	8.3	13.6	18.1
$8,000 \mathrm{ft}$	8.0	7.9	0.2	3.3	4.3	9.2	15.4	17.5
$6,000 \mathrm{ft}$	11.6	13.8	2.5	8.4	-1.3	5.8	15.3	17.8
$4,000 \mathrm{ft}$	16.4	18.8	10.0	14.6	6.3	11.6	21.0	21.0
$3,000 \mathrm{ft}$	16.0	19.0	11.3	15.7	5.3	11.3	23.5	26.0
$2,000 \mathrm{ft}$	17.4	7.5	12.0	17.0	9.9	15.0	22.4	22.5
$1,000 \mathrm{ft}$	15.6	16.3	14.0	22.6	9.4	15.5	20.5	23.2

HOTEL

10,000 ft	6.4	6.9	4.4	9.2	5.5	11.5	9.2	11.2
8,000 ft	3.0	5.9	9.0	14.3	8.0	11.6	12.7	12.8
6,000 ft	7.7	14.6	10.5	17.0	11.2	16.1	13.2	16.8
4,000 ft	9.6	12.0	11.7	15.6	9.4	15.2	20.2	18.9
3,000 ft	12.2	16.7	9.1	14.3	12.8	18.4	20.4	22.8
2,000 ft	13.0	13.5	9.5	15.9	14.3	19.3	21.2	24.2
1,000 ft	15.5	13.4	10.7	15.9	13.9	18.0	24.8	22.0
	Aircraft Heading							

KILO

$10,000 \mathrm{ft}$	-1.0	1.5	3.3	9.5	-1.2	8.8	7.4	5.9
$8,000 \mathrm{ft}$	-0.6	1.5	-1.7	0.5	4.5	9.0	7.2	8.5
$6,000 \mathrm{ft}$			-9.2	-2.6	1.9	10.0	8.5	12.0
$4,000 \mathrm{ft}$	1.9	-0.3	-7.0	-1.9	2.4	7.9	1.1	4.5
$3,000 \mathrm{ft}$	1.7	0.3	-2.3	-1.2	1.7	6.3	1.2	1.8
$2,000 \mathrm{ft}$	1.2	0.7	-0.9	-2.6	1.4	4.5	2.0	1.2
$1,000 \mathrm{ft}$			-1.9	-4.4	-3.1	4.6	-0.7	4.1
INDIA								
$10,000 \mathrm{ft}$	0.7	1.0	-8.2	0.5	4.2	11.1	10.5	14.6
$8,000 \mathrm{ft}$	0.4	4.5	-7.4	5.5	6.0	12.2	12.8	18.2
$6,000 \mathrm{ft}$	2.1	5.0	-1.7	0.6	0.1	6.7	1.5	10.0
$4,000 \mathrm{ft}$	1.8	3.9	-2.7	2.1	-1.2	5.0	-1.4	5.2
$3,000 \mathrm{ft}$	2.9	6.3	-3.4	3.9	2.8	7.4	4.8	11.5
$2,000 \mathrm{ft}$	5.1	5.7	-2.2	3.7	2.2	8.8	5.5	4.6
$1,000 \mathrm{ft}$	3.0	5.1	-4.5	2.7	0.9	6.8	2.9	7.4

4. COMPUTED DIVERGENCE AT 1,000 FT

The computed divergences at $1,000 \mathrm{ft}$ for the four nights are given in table 3. The "uncalibrated data" are divergences computed from the normal components of the wind vectors obtained by averaging each group of 10 read- ings of wind speed and direction from the ASN-4l computer (see section 2). The V_{M} 's for this are listed in table 1. The "calibrated data" are divergences via equation (3) from $1000-\mathrm{ft}$ normal wind components adjusted to multi-1evel sounding data by equation (18). The VS's for this are listed in table 2. These latter diyergences are all of the order of $10^{-6} \mathrm{sec}^{-1}$, expected a priori. Note that using uncalibrated winds gave divergences an order of magnitude greater.
-
To gain some idea of the range of validity of the calculations, 95 percent confidence limits for the divergences were computed by Theodore W. Horner (see appendix). These confidence limits indicate that there is still some uncertainty even concerning the sign of the divergence. It should be noted, however, that the standard deviation of the calibrated divergences for the four nights is only $.4 \times 10^{-6} \mathrm{sec}^{-1}$. Such an improbably low value may indicate that. the 95 percent confidence limits for individual runs are too broad in the aggregate. This would be true if part of the variance treated as random in the computation of confidence limits was actually systematic and persistent from night to night (e.g. the meridional gradients of wind velocity).

5. CONCLUSION

Horizontal divergences that appear realistic were obtained from a sample of aircraft wind measurements during BOMEX by careful systematic calibration and averaging. Other writers (e.g. Rieh1) have estimated the horizontal divergence in the Trades to be of the order of $10^{-6} \mathrm{sec}^{-1}$. If these measurements at 300 m altitude are taken as an approximation of the average over the lowest 600 m , they imply a sinking rate at cloud base level of the order of $50 \mathrm{~m} / \mathrm{day}$.

The data used for this study were manual tabulations of the on-board computer readout and therefore are probably the least reliable of the BOMEX aircraft wind measurements, which were automatically recorded with greater precision and time resolution in other line integral flights. This preliminary result gives promise that the BOMEX wind observations will fulfill their purpose of giving meaningful average divergence values for the BOMEX volume. This result also demonstrates, however, that very careful calibration incorporated into both the flight plan and the subsequent evaluations is mandatory.

Table 3. Divergences computed from data hand-tabulated from the ASN-41 on-board computer 1,000-ft wind measurements

6. ACKNOWLEDGMENTS

The assistance of Lt. Cdr. Charles Waldron of the U.S. Navy VW-4 Squadron in planning and executing the observation program and in interpreting the results, and of Joshua Z. Holland, Arnold H. G1aser, Theodore W. Horner, and Vance A. Myers of BOMAP in reviewing the method and checking the computational procedure is gratefully acknowledged.

7. REFERENCES

Friedman, Howard A., Ahrens, Merlin R., and Davis, Harlan W., "The ESSA Research Flight Facility: Data Processing Procedures," ESSA Technical Report ERL 132-RFF 2, Research Laboratories, Environmental Science Sexvices Administration, U.S. Department of Commerce, November 1969.

Rasmusson, Eugene M., "Mass, Momentum, and Energy Budget Equations for BOMAP Computations," NOAA Technical Memorandum ERL BOMAP-3, Environmental Research Laboratories, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, January 1971.

Rieh1, Herbert, Tropical Meteorology, McGraw-Hill, New York, 1954.

CONFIDENCE LIMITS FOR HORIZONTAL DIVERGENCE
ESTIMATED FROM WINDS MEASURED BY AIRCRAFT
Theodore W. Horner
Booz•A1len Applied Research, Inc. Washington, D.C.

INTRODUCTION

Postulate a component of the wind, normal or perpendicular (directed outward) to the side of the BOMEX volume. The integral of this component around the perimeter of the BOMEX volume is the horizontal divergence.

Aircraft wind data permit an estimation of the horizontal divergence. The average normal component for a side multiplied by the length of that side gives that side's contribution to the estimate. Summation of the contributions from each of the four sides gives the complete estimate of the horizontal divergence.

When the aircraft flies at one altitude, the estimate of the horizontal divergence is representative of the layer through which the flight is made. These estimates are imperfect. The aircraft samples only a small portion of the perimeter of a layer. It does not provide an simultaneous estimate at all points. In an extreme case during the time of aircraft flight the wind field might reverse itself, providing zero divergence through time, yet the estimate deduced from aircraft data might indicate maximum convergence or maximum divergence. Whether a good or bad estimate of the divergence is obtained depends on the extent to which the wind field (divergence) changes or does not change in time and the extent to which the aircraft adequately or inadequately samples the perimeter space.

Divergences estimated from aircraft winds may be compared to divergences estimated from rawinsonde winds and to those estimated from other data. However, this discussion pertains only to summations of the normal wind components around a layer perimeter of the BOMEX volume and to the errors inherent in these summations. These are labeled horizontal divergence estimates and confidence limits are attached.

Flight time around a layer's perimeter was usually about 7 hours. The actual divergence either changed or did not change, as did the wind field. Addition by sampling in time or space is not continuous. Even if the exact component for every sampled period or interval were known, as each point is associated with a different time, integration (summation) of the component around the perimeter provides a very complicated estimate, $\overline{\mathrm{D}}$, of the divergence as it changes in time. \bar{D} is a random variable whose value is a function of the time at which the aircraft arrives at each point on the perimeter.

However complicated it may be, it is the only estimate that can be obtained from aircraft winds. The same difficulties will be inherent in any system of wind measurements that does not provide simultaneous winds at each and every point of the BOMEX or any other volume under consideration.

This appendix describes the computation of \bar{D} and the attachment of confidence limits to the estimate. To the extent that \vec{D} is invariant with time during the flight, the confidence limits have a broader interpretation.

VARIANCE OF WIND COMPONENT NORMAL TO BOMEX VOLUME PERIMETER
The term $\mathrm{v}_{\mathrm{i}}(\mathrm{x}, \mathrm{t})$ represents the observed velocity normal (perpendicular) to the i-th side of the BOMEX volume at a time t, as measured from the start of the flight, and at a distance x from the corner of the BOMEX volume. Dropping the subscript i, a statistical model for this velocity on side i is:

$$
v(x, t)=u+d(x)+w(t)+e(x, t),
$$

where

$$
\begin{aligned}
u= & \text { the mean normal velocity along the side, } \\
d(x)= & \text { an adjustment for the effect of distance } x, \\
w(t)= & \text { an adjustment for the effect of time, and } \\
e(x, t)= & \text { an error deviation that includes all other } \\
& \text { sources of error. }
\end{aligned}
$$

The variance among the observations on a side includes variation due to $d(x)$, $w(t)$, and $e(x, t)$.

Draw a large number of pairs of values of x and t at random and assign the value of $v(x, t)$ to each. The variance among the v 's as the number of pairs increases toward infinity would tend toward

$$
\sigma_{\mathrm{v}}^{2}=\sigma_{\mathrm{d}}^{2}+\sigma_{\mathrm{w}}^{2}+\sigma_{\mathrm{e}}^{2},
$$

where the subscript identifies the source to which the variance applies. In the construction of confidence limits for divergence, one would like to use σ_{v}^{2}. However, σ_{V}^{2} is unknown. The sample variance tends to underestimate σ_{V}^{2}. The underestimation is not serious if there is no systematic variation of $d(x)$ with x or of $w(t)$ with t, but it tends to produce confidence limits for the divergence that are too narrow.

The nature of the underestimation is as follows. The sample variance computed from the observations on a side estimates

$$
f_{d} \sigma_{d}^{2}+f_{w} \sigma_{\mathrm{w}}^{2}+f_{e} \sigma_{\mathrm{e}}^{2},
$$

where the $f^{\prime} s$ are fractions. The fraction f_{e} should be essentially 1 as variation of e is due to largely independent error deviations from one $5-\mathrm{min}$ sample to another. The fractions f_{d} and f_{w} are expected to be less than 1 , because
(a) only a portion of the side of the volume was sampled, and
(b) only a portion of the variation of the entire flight time was sampled.

The fact that f_{d} and f_{w} are less than 1 becomes unimportant if the variances and σ_{y}^{2} and σ_{w}^{2} are small, in which case the sample variance can be regarded as a good estimator of σ_{v}^{2}. When the variances σ_{d}^{2} and σ_{w}^{2} are not sma11, but f_{d} and f_{W} are, the sample variance underestimates σ_{V}^{2}, and the confidence limits based on the sample variance will be too small.

The data available from side i are not a random sample of values of $v_{i}(s, t)$, as values in the x, t plane were not sampled at random. What is available is a set of values of v_{i}, which will be identified as $v_{i j}$, where $j\left(i=1, w, . \quad . p_{i}\right)$ is the j-th value. Both distance and time increase with the subscript j. The average component on a side is estimated as

$$
\bar{v}_{i}=\left(1 / p_{i}\right) \sum_{j} v_{i j} .
$$

The sample variance of v_{ij} is calculated as

$$
s_{v_{i j}}^{2}=\left[1 /\left(p_{i}-1\right)\right] \sum_{j}\left(v_{i j}-\bar{v}_{i}\right)^{2}
$$

which can be regarded as an estimator of σ_{v}^{2}, subject to the limitations discussed earlier.

The variance of the estimated average velocity on a side is estimated as

$$
s_{\bar{v}_{i}}^{2}=\left(1 / p_{i}\right) s_{v_{i j}}^{2}
$$

RATIONALE FOR USE OF CALIBRATION DATA OBTAINED DURING SOUNDINGS
Primes differentiate calibration data from other data. During the stepped soundings at the midpoint of each side of the BOMEX volume, the aircraft flew at seven different heights. On one of the sides, calibration data were obtained twice, once at the beginning of the sounding and once at its completion. At each height the aircraft flew 2 min in one direction and 2 min in the opposite direction along the same path. An average velocity normal to the face of the side was computed for each 2 -min interval. Subtracting the average normal velocity in the clockwise direction from that in the counterclockwise direction provides the difference in average normal velocity. An average difference is then calculated over the seven heights for three of the sides and as an average of 14 differences for the side with the two sets of calibration data.

Models for the calibration data are

$$
\bar{v}_{\text {io }}^{\prime}=\bar{v}_{\dot{i}, \operatorname{cor}}^{\prime}+b_{i},
$$

and

$$
\bar{v}_{i 1}^{!}=\bar{v}_{i}^{!}, \text {cor }-b_{i}
$$

where

$$
\left.\begin{array}{rl}
v_{i o}^{\prime}= & \text { observed average normal velocity in the counter- } \\
& \text { clockwise direction for the i-th side, }
\end{array}\right\}
$$

It follows that

$$
b_{i}=(1 / 2)\left(\bar{v}_{i o}^{\prime}-\bar{v}_{i l}^{\prime}\right)=1 / 2 \overline{\mathrm{~d}}_{\mathrm{i}},
$$

where

$$
\bar{d}_{i}=\left(1 / q_{i}\right) \sum_{j} d_{i j} .
$$

When the data were obtained along the sides of the BOMEX volume, the aircraft was flying counterclockwise. Thus the corrected average normal velocity was estimated as

$$
\overline{\mathrm{v}}_{\mathrm{i}, \mathrm{cor}}=\overline{\mathrm{v}}_{\mathrm{i}}-(1 / 2) \overline{\mathrm{d}}_{\mathrm{i}} .
$$

At each height for the calibration data, a difference in normal velocity was computed by subtracting the normal velocity in the clockwise direction from the normal velocity in the counterclockwise direction. This difference for the j-th ($j=1,2$, . . q_{i}) height on the $i-t h$ side was represented as d_{ij} : The $\mathrm{d}_{\mathrm{ij}} / 2$ for a side was regarded as a random sample of independent estimates of the bias characteristic of side i. The implicit assumption was made that the bias was the same at all heights and independent of the distance x or the time t. To the extent that these assumptions are invalid, the sample variance of the $d_{i j}$'s underestimates the variance that should be used in the construction of confidence limits. The average of the $d_{i j}{ }^{\prime} s$ is

$$
d_{i}=\left(1 / q_{i}\right) \sum_{j=1}^{q_{i}} d_{i j}=\bar{v}_{i o}-\bar{v}_{i l} .
$$

The sample variance of the d_{ij} 's is

$$
s_{\mathrm{d}_{i j}}^{2}=\left[1 /\left(q_{i}-1\right)\right] \sum_{j}\left(\bar{d}_{i j}-d_{i}\right)^{2},
$$

and the estimated variance of $\overline{\mathrm{d}}_{\mathrm{i}}$ is

$$
s_{d_{i j}}^{2}=\left(1 / q_{i}\right) s_{d_{i j}}^{2}
$$

ESTIMATION OF DIVERGENCE

In terms of the foregoing notation, the estimate of the divergence of the horizontal surface layer of the BOMEX volume was

$$
\hat{D}=L \sum_{i=1}^{4}\left(v_{i}-(1 / 2) \bar{d}_{i}\right)
$$

where L is the length of a side. The estimated variance of \hat{D} is

$$
s_{\hat{D}}^{2}=L^{2}\left\{\sum_{i=1}^{4}\left[s_{\stackrel{v}{v}_{i}}^{2}+1 / 4 s_{i}^{d_{i}}\right]\right\}
$$

Ninety-five percent confidence limits for the true divergence are computed as

$$
\hat{D} \pm t_{f} \hat{D}^{\hat{D}},
$$

where t_{f} is a value taken from a two-tailed Student t table with f degrees of freedom. The exact degrees of freedom that should be attached to it is unknown.

The number of degrees of freedom is approximated by a formula developed by Satterthwaite (see Satterthwaite, 1946) for estimating the degrees of freedom to be attached to a linear function F of independent estimated variances of the form

$$
\mathrm{F}=\sum_{i} \mathrm{a}_{\mathrm{i}} \hat{\mathrm{v}}_{\mathrm{i}}
$$

where a_{i} are arbitrary coefficients, and \hat{v}_{i} are independently estimated variances with f_{i} degrees of freedom. The approximation formula is

$$
f=\frac{\left(\Sigma a_{i} v_{i}\right)^{2}}{\Sigma\left(a_{i} v_{i} / f_{i}\right)^{2}}
$$

where f is the approximate number of degrees of freedom to be attached to F. In the application here, the following identifications were made:
$a_{1}=L^{2}$
$a_{2}=L^{2}$
$a_{3}=L^{2}$
$a_{4}=L^{2}$
$a_{5}=L^{2} / 4$
$a_{6}=L^{2} / 4$
$a_{7}=L^{2} / 4$
$v_{1}=s_{\bar{v}_{1}}^{2}$
$v_{2}=s_{v_{2}}^{2}$
$f_{1}=p_{1}$
$v_{3}=s \frac{2}{v_{3}}$
$f_{2}=p_{2}$
$f_{3}=p_{3}$
$v_{4}=s \frac{2}{v_{4}}$
$f_{4}=p_{4}$
$v_{5}=s_{V_{1}}^{2}$
$v_{6}=s_{V_{2}}^{2}$
$v_{7}=s^{2}{ }_{3}$
$f_{5}=q_{1}$
$f_{6}=q_{2}$
$f_{7}=q_{3}$
$a_{8}=L^{2} / 4$
$v_{8}=s_{v_{4}}^{2}$
$f_{8}=q_{4}$

REFERENCE

Satterthwaite, F.E., "An Approximate Distribution of Estimates of Variance Components," Biomedical Bulletin, Vol. 2, 1946, pp. 110-114.

